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Quantum corrections to the noninertial Brownian motion of a particle in a one-dimensional tilted cosine
periodic potential are treated in the high-temperature and weak bath-particle coupling limit by solving a
quantum Smoluchowski equation for the time evolution of the distribution function in configuration space. The
theoretical predictions from two different forms of the quantum Smoluchowski equation already proposed—
viz., J. Ankerhold et al. �Phys. Rev. Lett. 87, 086802 �2001�� and W. T. Coffey et al. �J. Phys. A 40, F91
�2007��—are compared in detail in a particular application to the dynamics of a point Josephson junction.
Various characteristics �stationary distribution, current-voltage characteristics, mean first passage time, linear
ac response� are evaluated via continued fractions and finite integral representations in the manner customarily
used for the classical Smoluchowski equation. The deviations from the classical behavior, discernible in the dc
current-voltage characteristics as enhanced current for a given voltage and in the resonant peak in the imped-
ance curve as an enhancement of the Q factor, are, respectively, a manifestation of relatively high-temperature
nondissipative tunneling �reducing the barrier height� and dissipative tunneling �reducing the damping of the
Josephson oscillations� near the top of a barrier.
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I. INTRODUCTION

The Wigner representation �1� or phase-space formulation
of quantum mechanics in terms of quasiprobability distribu-
tions of the canonical variables, also known as the Moyal
quantization �2�, allows quantum-mechanical expectation
values involving the density matrix to be calculated just as
classical ones and is eminently suited to the calculation of
quantum corrections to these. The Wigner representation
contains only features common to both quantum and classi-
cal statistical mechanics and formally represents quantum
mechanics as a statistical theory on classical phase space.
Wigner’s phase space or, more generally, representation
space formalism, originally developed �1� for closed quan-
tum systems in order to obtain quantum corrections to clas-
sical thermodynamic equilibrium, is useful in diverse
branches of physics �see, e.g., �3–7��. In particular, it may
also be applied to open quantum systems �8�, providing a
useful tool for the calculation of quantum corrections to clas-
sical models of dissipation such as Brownian motion �see,
for example, �9–14��. In this context the one-dimensional
quantum Brownian motion of a particle of mass m moving in
a potential V�x� is usually studied by regarding the Brownian
particle as bilinearly coupled to a bath of harmonic oscilla-
tors in thermal equilibrium at temperature T. The dynamics
of the particle are described by a master equation for the time
evolution of the Wigner distribution W�x , p , t� in the phase
space �x , p� of positions and momenta of the particle. This
equation is a partial differential equation in phase space akin
to the classical Fokker-Planck equation so that operators are
not involved. By using existing powerful computational
techniques developed for the Fokker-Planck equation �15�,
quantum effects on diffusive transport properties can then, in
principle, be estimated for arbitrary potentials and in a wide
range of dissipation parameters �see, e.g., �16–18��.

The description of the quantum dynamics of a Brownian
particle can be considerably simplified in the limit of very
high dissipation �VHD� to the heat bath �i.e., the noninertial
limit� just as in the classical theory of Brownian motion,
where the underlying kinetic equation is the Smoluchowski
equation for the configuration-space probability distribution
function P�x , t�. As shown recently �19,20�, the phase-space
formalism can be used to derive a quantum Smoluchowski
equation �QSE� for the configuration-space probability dis-
tribution function for noninertial translational Brownian mo-
tion via perturbation theory in �2 �� is Planck’s constant�.
The QSE obtained in �19,20� governs the time evolution of
the quasiprobability density in configuration space and char-
acterizes the motion of a quantum Brownian particle in the
VHD limit. It is derived �19� by first writing a master equa-
tion for the time evolution of the Wigner distribution
W�x , p , t� in the phase space �x , p� of positions and momenta
of the particle �11–13,20�: namely,
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where M̂D is the collision kernel operator. The left-hand side
of this equation is the quantum analog of the classical Liou-
ville equation pertaining to a closed system, where the colli-
sion term is zero. This situation was first discussed in the
context of quantum corrections to classical thermodynamic
equilibrium by Wigner �1�. He solved the closed �equilib-
rium� equation for relatively high temperatures using pertur-
bation expansions in Planck’s constant, thus yielding the
Wigner stationary distribution W0�x , p�. The ultimate objec-
tive of his investigation �21� was to obtain quantum correc-
tions �due to high-temperature tunneling near the top of the
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potential barrier� to classical reaction rate or transition state
theory �TST�. This theory is based on the assumption that
thermodynamic equilibrium prevails everywhere in the rel-
evant potential well so that the closed equation applies; i.e.,
the Brownian motion is ignored. The Wigner results, which
take the form of the classical TST rate �TST

cl multiplied by a
temperature- and potential-dependent quantum correction
factor � causing an effective lowering of the potential barrier
�thus increasing the reaction rate�, are limited to relatively
high temperatures. This is so because in calculating the
quantum-corrected reaction rate, the potential is replaced by
that of a harmonic oscillator near the bottom of a well, while
near the top it is replaced by that of an inverted harmonic
oscillator �21�. Returning to the nonequilibrium situation un-
der discussion �where the Brownian motion is included by
representing the collision kernel as essentially a Kramers-
Moyal expansion truncated at the second term �19,20��, the
right-hand side of the master equation �1�—i.e., the collision

kernel operator M̂D—describes the bath-particle interaction,
pertaining to an open system. Hence, assuming frequency-
independent damping �13,22� �which is valid for a wide
range of parameters in both weak and strong damping lim-

its�, the diffusion coefficients appearing in the operator M̂D
may be calculated to any order of perturbation theory in �2 in
a manner analogous to Wigner’s perturbation solution of the
closed equation. This is accomplished by postulating the
Wigner stationary distribution W0�x , p� as the equilibrium
solution of the master equation �1�. The imposition of the
Wigner stationary distribution as the equilibrium distribution
in order to calculate diffusion coefficients has been success-
fully applied in the quantum Brownian motion of particles
�17,18� and spins �23�. For point particles with separable and
additive Hamiltonians, the procedure is exactly analogous to
the ansatz, in classical Brownian motion, that the Maxwell-
Boltzmann distribution is the stationary solution of the un-
derlying Fokker-Planck �in this particular context called the
Klein-Kramers� equation for the phase-space evolution of the
joint distribution of positions and momenta. For spins, which
have no classical analog and, in general, nonseparable
Hamiltonians, the representation space �24� is the space of
polar and azimuthal angles �� ,�� constituting the canonical
variables. Thus, the classical equilibrium distribution, as-
sumed in order to calculate diffusion coefficients in the
Fokker-Planck equation for the distribution of spin orienta-
tions, is the Boltzmann distribution of orientations. In the
quantum spin case, however, the stationary Wigner distribu-
tion must be determined from first principles for each par-
ticular case of the spin Hamiltonian operator �23,24�.

Returning to particles, having determined the phase-space
diffusion coefficients, integration of the phase-space master
equation �1� over the momenta, and proceeding to the VHD
limit �18,19� exactly as for the classical Smoluchowski equa-
tion �25–28�, then leads to the QSE for the quasiprobability
density function P�x , t� in configuration space �x�: namely,
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is the quantum diffusion coefficient, 
=�2	2 / �24m� is the
characteristic quantum parameter, 	= �kT�−1, k is Boltz-
mann’s constant, T is the temperature, m is the mass of the
Brownian particle, �=�m is the friction coefficient, where �
is a dissipation �damping� parameter characterizing the bath-
particle interaction, and of course ��	�−1 is the classical dif-
fusion coefficient determined by Einstein. The drift coeffi-
cient −�−1�xV in Eq. �2�, on the other hand, coincides with its
classical counterpart. The quasiprobability density P�x , t� is
simply the trace of the density matrix operator �̂—namely,

x��̂�x�—constituting an example of Weyl’s correspondence
�29� between quantum-mechanical operators on Hilbert
space and ordinary c-number functions in phase space. The
Weyl correspondence inter alia allows averages of quantum-
mechanical operators to be calculated just as classical aver-
ages using the Weyl symbol of the operator. Now the QSE
resembles the classical Smoluchowski equation; however,
unlike that equation, the diffusion coefficient D�x� depends
on the derivatives of the potential and the characteristic
quantum parameter 
, while the drift coefficient remains the
same. �Equation �2� reduces to the classical Smoluchowski
equation for the configuration-space distribution function
P�x , t� when the quantum parameter 
=0�. Just as the clas-
sical case, the QSE describes the long-time �or low-
frequency� relaxation behavior of a system �15,28�.

Here we solve the QSE �2� for the particular case of a
tilted cosine �or biased washboard� potential in order to
evaluate quantum corrections �at relatively high tempera-
tures� to various characteristics to first and second order of
perturbation theory in �2. The model of Brownian motion of
a particle in a tilted cosine potential �see Fig. 1� arises in a
number of important physical applications. We mention Jo-
sephson junctions �30–32�, ring-laser gyroscopes �33�, the
dynamics of a charged-density-wave condensate in an elec-
tric field �34�, etc., and many other processes involving
quantum and classical Brownian motion in periodic struc-
tures �35�. As a particular example of an application of the
QSE, we shall now estimate quantum effects in the dynamics
of a point Josephson junction. In the context of classical

x

V(x)

FIG. 1. �Color online� Overdamped quantum Brownian motion
of a particle in a tilted periodic potential: the particle may escape
from a potential well both over �due to thermal agitation� and below
�due to tunneling through� the higher and lower potential barriers.
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Brownian motion, this system has been described in detail in
Refs. �30–32� �see also �28�, Chap. 5�. The dc current voltage
characteristics of a Josephson junction in the classical
Smoluchowski regime were derived by Ambegaokar and
Halperin �36� and by Ivanchenko and Zil’berman �37�. Vari-
ous aspects of quantum effects in the characteristics of Jo-
sephson junctions have already been analyzed, e.g., in Refs.
�38–42�. Here, we shall include quantum effects in the sta-
tionary distribution, the dc current-voltage characteristic, the
normalized differential resistance, and the nonstationary
problem of the linear impedance of a point Josephson junc-
tion �ignoring the capacitance, which corresponds to the non-
inertial or very high damping limit� by solving the QSE us-
ing the continued-fraction methods already developed for the
classical problem �15,28�. Moreover, we shall demonstrate
that the effective eigenvalue method �28� yields closed ana-
lytic solutions for the junction impedance as two Lorentzians
just as in the classical problem �28�. These have a simple
physical explanation as a damped resonant circuit with the
decay rate and resonant frequency of the oscillations given
by the real and imaginary parts of the effective eigenvalue.
We shall also calculate the mean first passage time for a
particle to leave a well of the potential. The mean first pas-
sage time may be determined, just as the classical case,
knowing the quantum diffusion coefficient and stationary
distribution only �15�. Moreover, the convergence of the per-
turbation procedure in �2 will be tested by comparing the
first and second order of perturbation theory solutions. We
remark that a feature of the present problem is that the first-
order perturbation solution of the QSE reduces to a three-
term scalar recurrence relation, just as the corresponding
classical problem �15�. This relation may then be solved us-
ing scalar continued fractions. If the calculation is carried to
the second order of perturbation theory, however, one must
always resort to matrix continued fractions, as a five-term
recurrence relation is now involved. Nevertheless, the matrix
continued fraction so generated is much simpler than that
obtained �17� using the master equation �which is valid for
all dissipation regimes� for the phase space distribution
W�x , p , t�. Yet another simplification stemming from the QSE
is that the diffusion coefficient may be calculated to any
order of perturbation theory from the equilibrium Wigner
configuration-space distribution PW�x� without recourse to
the complete phase-space master equation as we shall pres-
ently demonstrate. This is accomplished following the origi-
nal method of Einstein and Smoluchowski �28� for the non-
inertial classical Brownian motion by using the explicit form
of the equilibrium solution of the QSE. All the foregoing
results will then be compared with those calculated from the
QSE recently proposed by Ankerhold et al. �43� from the
path-integral representation of dissipative quantum mechan-
ics. This equation has already been used in many applica-
tions of the quantum Brownian motion in a periodic potential
�see, e.g., �41,42,44–47��.

II. DERIVATION OF THE QSE

The dynamics of a quantum system described by the
semiclassical Smoluchowski equation �2� may be equiva-

lently described using a quantum analog of the Langevin
equation with multiplicative noise. The Langevin equation
corresponding to Eq. �2� in the Stratonovich interpretation
�15,28� reads

ẋ�t� = −
1

�
�x	V�x�t�� +

�

2
D�x�t��
 +�	

�
D�x�t��
�t� ,

�4�

where the diffusion coefficient D�x� from Eq. �3� depends on
the derivatives of the potential and the characteristic quan-
tum perturbation parameter 
=�2	2 / �24m�, the overdot de-
notes the time derivative, and 
�t� is a random force with the
Gaussian white noise properties


�t� = 0, 
�t�
�t�� = �2�/	���t − t��

�the overbar means the statistical average over the realiza-
tions of the random force�. Equation �4� may be used as an
approximate description of the kinetics of a quantum Brown-
ian particle in the VHD �or noninertial� limit. By averaging
Eq. �4�, one obtains the averaged equation of motion

x̄̇ = − �−1�xV�x�

and thus the drift coefficient, coinciding with its classical
counterpart.

The explicit form of the diffusion coefficient D�x� in Eq.
�3� has been obtained in �19,20� from the high-damping
�noninertial� limit of the phase-space master equation �1�. As
we have briefly mentioned above, yet another simpler
method of determining D�x�, avoiding the time-dependent
phase-space master equation entirely, is based on an exten-
sion of the ansatz that the Boltzmann distribution is the equi-
librium solution of the classical Smoluchowski equation.
This simple heuristic idea was originally used by Einstein,
Smoluchowski, and others �28� in order to calculate the drift
and diffusion coefficients. By extending this idea, the drift
and diffusion coefficients can be directly evaluated in the
QSE from a knowledge of the equilibrium configuration-
space quantum distribution only. In order to determine the
explicit form of the diffusion coefficient D�x� in Eq. �3�, we
first recall that the stationary distribution function in configu-
ration space, PW�x�, must be a stationary solution of the QSE
�2�. Here the simplification occurs because PW�x� can be
evaluated directly from the stationary Wigner distribution
function W0�x , p� in the phase space of coordinates and mo-
menta �x , p� since by definition �1,20�

PW�x� = �
−�

�

W0�x,p�dp . �5�

Now the Wigner distribution can in general be developed in
a power series in �2 as �1�

W0�x,p� = e−	��x,p� + �2w2�x,p� + �4w4�x,p� + ¯ ,

where ��x , p�= p2 /2m+V�x� is the classical energy. Further-
more, the perturbed functions w2r�x , p� can be evaluated ex-
plicitly in terms of the derivatives of V�x� to any desired
power of r as described by Wigner �1�, where explicit equa-
tions for w2�x , p� and w4�x , p� are given. The stationary dis-
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tribution function in configuration space, PW�x�, can then be
evaluated to any desired power of r by simply integrating
W0�x , p� with respect to the momentum p. The explicit equa-
tion for PW�x� to second order in �2 is �20�

PW�x� = e−	V	1 + 
�	�V��2 − 2V�� +

2

10
�36V�2 + 48V�V�

− 44	V�V�2 + 5	2V�4 − 24V�4�/	� + ¯ 
 . �6�

Now, according to our ansatz, the stationary distribution
PW�x� must be the stationary solution of the postulated time-
dependent equation �2�; i.e., it satisfies

�

�x
	PW

�

�V

�x
+

�

�x
�DPW�
 = 0. �7�

Hence, seeking the diffusion coefficient D�x� as a power se-
ries in �2, viz.,

D�x� = ��	�−1 + �2d2�x� + �4d4�x� + ¯ , �8�

one finds �substituting Eq. �8� into Eq. �7�� the spatially de-
pendent D�x� given by Eq. �3�. Thus the imposition of the
Wigner configuration-space distribution PW�x� as the equilib-
rium solution of Eq. �2�, yielding a diffusion coefficient D
depending on the derivatives of the potential, is the exact
analog of the ansatz of a Boltzmann stationary solution in the
classical theory.

We remark that in the derivation of D�x� above, we have
imposed PW�x� as the stationary solution of the QSE �2�, as
determined from the stationary Wigner phase-space distribu-
tion function W0�x , p� in the approximation of frequency-
independent damping. In the high-temperature limit, viz.
�8,19,20�,

T � T0 = ��/�2�mk� , �9�

this approximation may be used in a wide range of model
parameters if the interactions between the Brownian particle
and the heat bath are small enough to allow one to use the
weak-coupling limit and if the correlation time characteriz-
ing the bath is so short that we can regard the stochastic
process originating in the bath as Markovian �a detailed dis-
cussion of the validity of this approximation is given by
Weiss �8� and Grabert �48��. For parameter ranges, where
such an approximation is invalid �e.g., throughout the very-
low-temperature region, where non-Markovian effects are
substantial�, other methods should be used. We have also
chosen such an approximation because our present objective
is to understand how quantum effects treated in semiclassical
fashion alter the classical Brownian motion in a potential in
the Smoluchowski �VHD� regime where frequency-
independent damping is always assumed. Now the distribu-
tion W0�x , p� describes the system in thermal equilibrium
without coupling to the thermal bath and corresponds to the

canonical density matrix �̂eq=e	Ĥ /Z �Ĥ is the Hamiltonian of
the system and Z is the partition function� �1�; i.e., it pertains
to the closed system. The ansatz that the equilibrium distri-
bution corresponds to the canonical distribution has been
successfully used both by Gross and Lebowitz �49� in their

formulation of quantum kinetic models of impulsive colli-
sions and by Redfield �50� in the calculation of the matrix
elements of the relaxation operator in the context of his
theory of relaxation processes. However, by the theory of
quantum open systems �8�, the equilibrium state in general
may deviate from the canonical distribution �̂eq, insofar as
the canonical distribution describes the thermal equilibrium
of the system in the weak-coupling and high-temperature
limits only. A detailed discussion of this problem is given,
e.g., by Geva et al. �51�. Thus, in general in open quantum
systems, the equilibrium phase-space distribution may de-
pend on the damping and hence deviate from the canonical
distribution W0�x , p�. However, one may in general conclude
that the damping-independent stationary distribution will re-
produce the correct quantum results if the condition embod-
ied in Eq. �9� is satisfied.

Now, the QSE deduced by Ankerhold et al. �43� is very
similar but not identical to Eq. �2�. In the high-temperature
limit, that equation reads �in our notation�

�P

�t
=

�

�x
	P

�

�

�x
Vef +

�

�x
�DP�
 , �10�

where Vef =V�x�+
V��x� /	 is the effective potential. We see
that Eq. �10� differs from Eq. �2� by the additional term in
Vef f. However, this difference is important, because the sta-
tionary solution of Eq. �10� is

PA�x� � e−	V�x��1 + 
�	V��x�2 − 3V��x�� + ¯ � . �11�

The true Wigner equilibrium distribution in configuration
space, PW�x�, from Eq. �6� does not, however, coincide with
the stationary distribution PA�x� and so does not satisfy Eq.
�10�.

III. APPLICATION TO A TILTED PERIODIC POTENTIAL

As a particular example of the solution of Eq. �2�, we
consider the one-dimensional translational Brownian motion
of a particle in a tilted periodic potential:

V�x� = − V0 cos�2�x/a� − Fx , �12�

where a is a characteristic length. On introducing the nor-
malized coordinate x, time �, tilt y, barrier parameter b, and
quantum parameter 
 as

	V�x� → V�x�, y =
aF

2�V0
, 	V0 = b,

2�x

a
→ x,

t

�
→ t, � =

�	a2

4�2 , 

8�2

	a2 → 
 ,

the QSE �2�, becomes

�P

�t
=

�

�x
	V�P +

�

�x

��1 + 
V� −

2

5
�V�2 + 3V�V�3� − 3V�4�� + ¯ �P
 ,

�13�

where the potential in dimensionless variables becomes
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V�x� = − b�cos x + yx� . �14�

In the application to a Josephson junction, modeled by an
equivalent parallel electric circuit consisting of a resistance R
in parallel with a capacitance C across which is connected an
ideal current generator �representing the bias current Idc ap-
plied to the junction� �30–32�, the mass m and the friction
coefficient � of the mechanical Brownian particle must be
replaced by the corresponding electrical parameters R and C
�resistance and capacitance of the junction� via

m = C��/2e�2, � = ��/2e�2/R ,

where e is the charge of the electron. Here the parameter b
means the normalized �in the thermal energy kT� Josephson
coupling energy and the tilt parameter y is the ratio of the
bias current Idc to the supercurrent amplitude I, while the
dimensionless coordinate x �meaning the phase difference
between the wave functions for two superconductors� is
given by the Josephson equation �30–32�

ẋ�t� = 2ev�t�/� ,

where v�t� is the potential difference across the junction. The
validity of the QSE �13� for the problem in question may be
justified as follows. Noting that �=� /m=1 / �RC�, we can
estimate T0 on the right-hand side of Eq. �9� for typical val-
ues of R and C for Josephson junctions, as studied, for ex-
ample, by Anderson and Goldman �52� and Falco et al. �53�
�here the effects of thermal noise on current-voltage charac-
teristics of Josephson junctions have been measured experi-
mentally and have been compared with the model of Ambe-
gaokar and Halperin �36� and Ivanchenko and Zil’berman
�37��. For R=1.3 � and C=245 pF �52� and R=0.2 � and
C=1200 pF �53�, we have, respectively, T0�0.004 K and
T0�0.005 K. These estimations show that the values of T0
for the two examples quoted above are very low in compari-
son with the temperatures of interest �which are also very
low; for example, in both references experimental data were
given in the temperature range T�1.4–4.2 K�. Thus the
condition of applicability of our QSE, T�T0, is perfectly
fulfilled �at least as far as the two examples quoted are con-
cerned�. One can also estimate the Josephson plasma fre-
quency �0=�2eI / ��C� for the given examples. This charac-
teristic frequency determines the conditions of applicability
of Ankerhold’s QSE

T � TA =
��0

2

2�k�
.

From data given in Refs. �52,53�, we have, respectively, �0
�6�109 s−1 and TA�0.01 K �i.e., TA�T0� and �0�6
�108 s−1 and TA�0.00015 K �i.e., TA�T0�. These estima-
tions show that the temperature TA is also very low and can
be both smaller and larger than T0.

In many physical applications, a periodic solution P�x , t�
of Eq. �13� is required. This may be expanded in a Fourier
series in x: viz. �15,28�,

P�x,t� =
1

2�
�

n=−�

�

cn�t�einx. �15�

By substituting Eq. �15� into Eq. �13�, we find that the Fou-
rier coefficients �statistical moments�

cn�t� = 
e−inx��t� = �
0

2�

e−inxP�x,t�dx

satisfy the following differential-recurrence relation to sec-
ond order in the perturbation parameter 
:

d

dt
cn�t� + �n2 + inby�cn�t�

=
bn

2
��1 − n
�cn−1�t� − �1 + n
�cn+1�t��

+
�bn
�2

5
�cn−2�t� +

3�1 − iby�
2b

cn−1�t� − cn�t�

+
3�1 + iby�

2b
cn+1�t� + cn+2�t�� . �16�

This recurrence relation will yield the time-dependent peri-
odic solution in the second order of perturbation theory. It is
obvious that the first-order perturbation solution constitutes a
three-term recurrence relation similar to that encountered in
the classical case �15,28�.

In like manner, the periodic solution PA�x , t� of Eq. �10�
can be expanded in a Fourier series in x. Thus substituting
PA�x , t�=�n=−�

� cn
A�t�einx /2� into Eq. �10�, the corresponding

Fourier coefficients cn
A�t� again satisfy a three-term differen-

tial recurrence relation to first order in 
: viz.,

d

dt
cn

A�t� + �n2 + inby�cn
A�t� =

bn

2
��1 − �n + 1/2�
�cn−1

A �t�

− �1 + �n − 1/2�
�cn+1
A �t�� .

�17�

In the classical limit �
=0�, both Eqs. �16� and �17� become
the known differential-recurrence relation for the classical
statistical moments �15,28�. Methods of solution of Eqs. �16�
and �17� are described in detail in �15,28�. We shall first
consider the stationary solution of Eq. �16� using these. To
simplify the analysis and to facilitate the comparison with
predictions of the QSE of Ankerhold et al. �43�, Eq. �10�, we
may neglect the second-order correction term in Eq. �16� �so
that just as the classical case, the differential-recurrence
equation becomes a three-term recurrence relation� and
present the solution to terms linear in the quantum correction
factor 
: i.e., o�
�.

IV. STATIONARY PERIODIC SOLUTION OF THE QSE

The periodic stationary solution Pst�x� of Eq. �13� can be
obtained following the method used in �15� for the classical
Smoluchowski equation from the equation for the probability
current S �which is constant in this case�:
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Pst� �V

�x
+ 


�3V

�x3 � + �1 + 

�2V

�x2 � �Pst

�x
= − S �18�

�for simplicity, we shall consider only terms linear in 
 as is
consistent with perturbation theory to first order in 
�. Solv-
ing Eq. �18� for Pst�x� and using the properties of the peri-
odic solution Pst�x+2�n�= Pst�x� for all n, we have

Pst�x� = C	PW�x��I − �1 − e−2�by��
0

x

eV�z�dz�
−




2
e−V�x��I1 − �1 − e−2�by��

0

x

eV�z��V��2dz�
 ,

�19�

where I=�0
2�eV�x�dx, I1=�0

2��V��x��2eV�x�dx, and C is the nor-
malizing constant determined by �0

2�Pst�x�dx=1. For zero
tilt—i.e., y=0—the stationary solution, Eq. �19�, reduces to
the Wigner distribution in configuration space: viz., Pst�x�
=CPW�x�. The stationary solution Pst

A�x� of Eq. �10� can be
found in like manner. In the classical limit, Eq. �19� has been
used in Refs. �36,37� in order to calculate the dc current-
voltage characteristics.

However, in spite of the relatively simple quadrature so-
lution, as shown by Risken �15� and Coffey et al. �28�, the
most efficient method of calculation of both stationary and
nonstationary solutions is via continued fractions as they cir-
cumvent the problem of evaluating integrals of transcenden-
tal functions similar to those encountered in the stationary
quadrature solution, Eq. �19�. Moreover, continued fractions
lend themselves very naturally to computational algorithms.
We may implement this method by recalling that, in the sta-
tionary state, the periodic distribution function Pst�x� can be
expanded in a Fourier series in x �15�: viz.,

Pst�x� =
1

2�
�

n=−�

�

Cneinx, �20�

where Cn= 
e−inx�0=�0
2�e−inxPst�x�dx and the angular brackets

�with zero subscript� denote the stationary ensemble average.
Using this expansion either directly in Eq. �13� or simply by
omitting the time derivative and the second-order terms in
Eq. �16�, we obtain the recurrence relation for the Fourier
coefficients Cn to terms linear in 
: viz.,

QnCn + Qn
+Cn+1 + Qn

−Cn−1 = 0, �21�

where

Qn = − �n/b + iy�, Qn
� = � �1 � n
�/2. �22�

Equation �21� can be rearranged as the infinite continued
fraction Sn=Cn /Cn−1 so that

Sn =
Qn

−

− Qn − Qn
+Sn+1

=
Qn

−

− Qn −
Qn

+Qn+1
−

− Qn+1 −
Qn+1

+ Qn+2
−

− Qn+2 − ¯

.

�23�

Thus, just as the classical case �28�, all the Cn can simply be
calculated via continued fractions as

Cn = SnCn−1 = SnSn−1 ¯ S1 �24�

�noting that C0=1�. In particular, we have

C1 = S1. �25�

Having determined Cn, we can calculate the stationary dis-
tribution, Eq. �20�.

In the classical limit �
=0�, Eqs. �23� and �25� yield the
known results �28�

Sn
cl =

1/2

nb−1 + iy +
1/4

�n + 1�b−1 + iy +
1/4

�n + 2�b−1 + iy + ¯

=
In+iyb�b�

In−1+iyb�b�
�26�

and

C1
cl = I1+iyb�b�/Iiyb�b� , �27�

respectively, where I��z� is the modified Bessel function of
the first kind of order � �54�. The stationary solution of
Ankerhold’s equation �10� may be determined in like man-
ner. We recall that all such solutions are valid only to terms
linear in 
. The stationary solution of Eq. �16� to o�
2� is
given in Appendix A using matrix continued fractions.

V. MEAN FIRST PASSAGE TIME AND ESCAPE RATES

The QSE can be used to estimate quantum effects in the
various characteristic times of the system �such as the in-
verse escape rate, mean first passage time, etc.� in the VHD
limit. These times are important parameters of the Josephson
junction or the ring laser gyroscope as they effectively yield
a measure of the phase slip. For simplicity, we consider zero
tilt only: i.e., y=0. A semiclassical correction to the classical
Kramers escape rate �cl of a Brownian particle over a poten-
tial barrier �V in the VHD limit and above the crossover
temperature TC �at which the parabolic or inverted harmonic
oscillator approximation for the potential is valid near the top
of the barrier� can then be written �20�

� = ��cl. �28�

Equation �28� constitutes the classical VHD Kramers escape
rate �cl=

m�c�a

2�� e−	�V multiplied by Wigner’s quantum correc-
tion factor derived using TST �8,9,19�:
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� =
�c

�a

sinh��	�a/2�
sin��	�c/2�

= 1 +
	2�2

24
��c

2 + �a
2� + ¯ ,

where �c=��V��xc�� /m and �a=�V��xa� /m are the barrier
and well frequencies �points c and a are, respectively, the
maximum and minimum of the potential V�x��. The form of
Eq. �28� reinforces our previous contention �20� that we are
essentially treating our system at T�TC as a quantum par-
ticle embedded in a classical bath, where the diffusion coef-
ficient is modified to take into account quantum dissipative
effects due to the bath-particle interactions. The quantum
correction terms in Eq. �28� are �as they must be� in complete
agreement with Wigner’s calculation of the escape rate �21�
and in effect reduce the barrier height. The physical origin of
the corrections is tunneling at relatively high temperatures
near the top of the barrier. In the context of the quantum
intermediate- to high-damping �IHD� Kramers rate �20�, we
remark that the appropriate quantum correction factor was
first derived by Wolynes �55� and later by Pollak �56�. The
quantum �IHD� correction factor yielded by these calcula-
tions is for Ohmic friction �55�

�W = �
n=1

�
�a

2 + �2�n/�	�2 + 2�n�/�	

− �c
2 + �2�n/�	�2 + 2�n�/�	

. �29�

A comprehensive analysis of Eq. �29� has been made by
Grabert et al. �57�, Hänggi et al. �58�, and also Weiss �8�,
where it is shown how Wigner’s quantum correction � is
recovered in the high-temperature limit. In this particular in-
stance the damping independent � is a fair approximation to
�W in the VHD limit. This result suggests that replacement
of the equilibrium distribution function by that of the closed
system may ultimately yield reasonable semiclassical ap-
proximations to the actual time-dependent quantum distribu-
tion.

The longest relaxation time �L can now be estimated as
�L��−1. However, noting the explicit forms of the diffusion
coefficient D�x� and stationary distributions PW�x� and
PA�x�, one can also estimate the longest relaxation time �L
using the mean first passage time �MFPT. For a cosine poten-
tial, the mean first passage times for both our QSE �2�, and
that of Ankerhold et al., QSE �10�, may be given by quadra-
tures just as the classical Smoluchowski equation. We have,
following the methods described in �15�,

�MFPT = �
0

2� dx

PW�x�D�x��0

x

PW�y�dy �30�

and

�MFPT
A = �

0

2� dx

PA�x�D�x��0

x

PA�y�dy , �31�

respectively. In the classical limit 
→0, both equations re-
duce to the classical �MFPT

cl . In Fig. 2, we have plotted the
quantum correction factors

� − 1 = �/�cl − 1 = 2b
, �MFPT
cl /�MFPT − 1,

�MFPT
cl /�MFPT

A − 1.

Clearly, the correction factor �MFPT
cl /�MFPT

A −1 using Eq. �31�
derived from the QSE of Ankerhold et al. �43� deviates con-
siderably from the Wigner correction �−1 while our QSE
predicts the same quantitative behavior of �MFPT

cl /�MFPT−1
as the Wigner correction. The discrepancy in the two results
is entirely due to the different behavior of the stationary dis-
tributions Pst�x� and Pst

A�x�. Therefore, it appears that Eq.
�31� derived from the Ankerhold QSE �10�, exaggerates the
quantum effects.

VI. DC CURRENT-VOLTAGE CHARACTERISTICS OF A
POINT JOSEPHSON JUNCTION

Now, the tilted cosine potential model may also be used to
calculate the dc current-voltage characteristics of a point Jo-
sephson junction, which, of course, depend only on the sta-
tionary distribution. In order to determine these, we first note
that, ignoring the capacitance, the current balance equation
for the junction becomes in dimensionless variables �28�


v�0 = y − 
sin x�0 �32�

with 
v�0= 
ẋ�0 denoting the dimensionless average voltage
in the stationary state. Equation �32� determines the dc
current-voltage characteristic because we can find 
sin x�0
merely by extracting the imaginary part of C1 given by the
continued fraction Eq. �25� since

C1 = 
e−ix�0 = 
cos x�0 − i
sin x�0.

Thus, we have


v�0 = y + Im�C1� . �33�

We can also calculate from Eq. �33� the normalized differen-
tial resistance of the junction: namely,

d

dy

v�0 = 1 +

d

dy
Im�C1� . �34�

As shown in Appendix B, the coefficient C1 from Eq. �25�
can also be expressed in terms of the modified Bessel func-
tions of the first kind, I��z�, as the perturbation expansion
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FIG. 2. The quantum correction factors �−1=� /�cl−1=2b

�solid circles�, �MFPT

cl /�MFPT−1 �solid line�, and �MFPT
cl /�MFPT

A −1
�dashed line� vs b �Josephson coupling energy� with 
=0.001.
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C1 = C1
cl + 
C1

�1� + ¯ =
I1+iyb�b�
Iiyb�b�

+



Iiyb
2 �b��n=1

�

��− 1�nnIn+iyb�b��In+1+iyb�b� + In−1+iyb�b���

+ ¯ . �35�

In the classical limit, Eqs. �33� and �34� yield the known
results �28� for the characteristics


v�0 = y + Im�I1+iyb�b�/Iiyb�b�� �36�

and

d

dy

v�0 = 1 − Re� 2

Iiyb
2 �b�

�
0

b

Iiyb�z�I1+iyb�z�dz� . �37�

The current-voltage characteristic, Eq. �33�, and normalized
differential resistance, Eq. �34�, for both forms of the QSE,
Eqs. �2� and �10�, calculated using C1 to o�
�, rendered by
the continued-fraction solution, are shown in Fig. 3 along
with the classical results from Eqs. �36� and �37�. The quan-
tum effects due to high-temperature nondissipative tunneling
near the top of the barrier are readily detectable for large

supercurrents and relatively small bias. They comprise an
enhanced current for a given voltage, Fig. 3�a�, and an en-
hanced slope of the differential resistance, Fig. 3�b�. We note
the unphysical behavior of the characteristics calculated
from the QSE proposed by Ankerhold et al. �43� for large
barrier values b �where the superconducting behavior is pro-
nounced� whereby negative resistance is predicted for zero
voltage, Fig. 3�a�. This behavior is particularly pronounced
in Fig. 3�b� where the continued fraction generated by Eq.
�10� predicts negative differential resistance. In all cases the
deviation from the classical behavior is most marked for
large b—i.e., large Josephson coupling energy. In Fig. 4, the
convergence of the perturbation procedure is investigated by
comparing the first- and second-order perturbation solutions
of the QSE �2� obtained by solving Eq. �16� to o�
2�.
Clearly, the first-order perturbation solution closely approxi-
mates the second-order one for small 
 �here for 
=0.1�.
Moreover, the greater 
 and b are, the higher the order of
perturbation theory required.

Having determined the stationary solution, we now con-
sider the nonstationary problem of the linear impedance of
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FIG. 3. �a� Quantum effects on the current-voltage �Eq. �33��
and �b� differential resistance-current �Eq. �34�� characteristics of a
Josephson junction in the presence of noise for 
=0.2 and various
values of the Josephson coupling energy b=1, 2, and 4. Solid and
dashed lines are the predictions of Eq. �2� and of the Ankerhold
equation �10�, respectively. Dots: classical limit 
=0.
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the junction for the QSE �13�. The impedance can be found
using the continued-fraction method or in approximate
closed form as two Lorentzians from the effective eigenvalue
aftereffect solution just as in the classical case �28�.

VII. LINEAR RESPONSE OF THE JOSEPHSON JUNCTION
TO AN APPLIED ALTERNATING CURRENT

In order to evaluate the linear ac response of the Joseph-
son junction, we suppose that the tilt now becomes modu-
lated so that y→y+yme−i�t, where bym�1, so that the tilt is
weakly perturbed �corresponding to a small signal ac super-
imposed on the dc bias current�. We can then make the per-
turbation expansion

cn = cn
0 + An���yme−i�t + ¯ , �38�

with A0���=0 and cn
0=�k=1

n Sk is the unperturbed solution. In
particular, simply by evaluating the Fourier amplitude A1���
one may evaluate the linear impedance Z���=R�− iX� of the
junction �here R� and X� are the dynamic resistance and the
reactance, respectively� by recalling that the averaged
current-balance equation in the presence of the ac current is


v�0 + 
v�1 = y + yme−i�t − 
sin ��0 − 
sin ��1,

where the subscript “0” on the angular brackets denotes the
average in the absence of the ac current and the subscript “1”
the portion of the average which is linear in ym. Thus we
have


v�1 = yme−i�t − 
sin ��1 = Z���Ime−i�t/�RI�

where Z��� is the linear impedance of the junction given by

Z��� = R�1 − i�A1��� − A−1����/2� . �39�

By substituting Eq. �38� into Eq. �16�, with y replaced by
y+yme−i�t, and keeping only terms linear in yme−i�t and 
,
we obtain the inhomogeneous three-term recurrence relation
for the Fourier amplitudes An���: viz.,

Qn
−An−1��� + Qn

+An+1��� + �Qn + i�/�bn��An��� = icn
0.

�40�

The exact solution of the three-term recurrence relation �40�
is �22�

A1��� = − i�
n=1

�

cn
0�

k=1

n

Qk−1
+ �k��� , �41�

where the continued fraction �k��� is defined by the recur-
rence equation

�k��� = �− i�/�bk� − Qk − Qk
+Qk+1

− �k+1����−1

Noting that Sk=Qk
−�k�0� so that cn

0=�k=1
n Qk

−�k�0�, we can
rewrite Eq. �41� as

A1��� = 2i�
n=1

�

�
k=1

n

Qk−1
+ Qk

−�k�0��k��� . �42�

We remark that A−1��� can be calculated as A−1���
=A

1
*�−�� �28�. Equation �42� combined with Eq. �39� consti-

tutes the first-order perturbation solution for the linear ac
response in terms of sums of products of continued fractions,
allowing one to evaluate the linear impedance of the Joseph-
son junction. When �=0, Eqs. �39� and �42� yield the differ-
ential resistance of the junction, Z�0� /R=d
v�0 /dy, Eq. �34�,
as they should.

Although Eqs. �39� and �42� are simple as far as numeri-
cal computation is concerned, their analytic form is rather
cumbersome, rendering a clear physical interpretation of the
behavior difficult, so that simplified equations are preferable.
These may be obtained by using the effective eigenvalue
method just as in the classical case �28�. The method then
yields a simple analytic expression for the impedance as we
shall now illustrate. By substituting the perturbation expan-
sion cn�t�=cn

0+cn
1�t�+¯, where the superscript denotes the

power of the applied field into Eq. �16�, and replacing y by
y+yme−i�t, we obtain for n= �1

d

dt
c�1

1 �t� + �1 � iby�c�1
1 �t�

= −
b

2
�1 + 
�c�2

1 �t� � ibymc�1
0 e−i�t. �43�

Equation �43� is a differential-recurrence relation for the lin-
ear response, which is not closed. Nevertheless, by using the
effective eigenvalue method �see for details Ref. �28��, we
can rewrite Eq. �43� as two approximate closed ordinary dif-
ferential equations

d

dt
c�1

1 �t� + 
ef
�c�1

1 �t� = � ibymc�1
0 e−i�t, �44�

where 
ef
� =1 /�ef

��1�=
�� i
� are a pair of effective eigenval-
ues and the effective relaxation times �ef

��1� are given in terms
of continued fractions in Appendix C. The steady-state solu-
tion of Eq. �44� is given by the single-pole approximation

c�1
1 = �

ibS�1


ef
� − i�

yme−i�t, �45�

where S−1=S
1
* are the equilibrium continued-fraction solu-

tions defined by Eq. �23�. Noting Eqs. �39� and �45�, we
obtain the impedance Z��� in terms of the effective eigen-
values as

Z���
R

= 1 −
b

2� S1


ef
+ − i�

+
S1

*



ef

+* − i�
� . �46�

This expansion merely comprises two Lorentzians, repre-
senting damped oscillatory behavior since 
ef

+ is complex,
and so is much simpler than the continued-fraction solution
rendered by Eq. �42�. When �=0, Eq. �46� again yields the
correct value of the differential resistance of the junction,
Z�0� /R=d
v�0 /dy, Eq. �34�. In the classical limit, we can
also express the impedance of the junction Z��� in terms of
the modified Bessel functions I��z�. Using Eq. �26�, we have
�28�
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Z���
R

= 1 −
b

2� I1+iyb�b�
Iiyb�b��
ef

+ − i��
+

I1−iyb�b�

I−iyb�b��

ef

+* − i��� ,

�47�

where 
ef
+ is determined by Eq. �C9� of Appendix C.

We now compare the impedance Z��� calculated from the
approximate Eqs. �46� and �47� with the continued-fraction
solution �Eqs. �39� and �42��. The results are shown in Figs.
5 and 6. It is apparent by inspection that the simple effective

eigenvalue solution corresponds almost perfectly to the
continued-fraction solution for a wide range of the param-
eters y and b in both the classical and quantum cases. More-
over, it allows one to represent the impedance of the junction
Z��� by the simple analytic formula of Eq. �46�, which
merely constitutes a damped resonance with natural angular
frequency 
� and damping constant 
� taking into account
the effects of macroscopic tunneling near the top of the bar-
rier. We also remark that the deviations from the classical
solution, Eq. �47�, predicted by the QSE are significant. The
deviations are exemplified in Fig. 5, where for large b, cor-
responding to a large Josephson coupling energy, the reso-
nant peak is considerably enhanced �i.e., we have a higher Q
factor� in comparison to the classical one. The reduction in
the damping is particularly marked for large barriers and
moderate tilts. This is corroborated by Figs. 7 and 8, where
the real part of the effective eigenvalue is reduced due to the
dissipative tunneling near the top of the barrier. This phe-
nomenon represents a decrease in the damping factor of the
Josephson oscillations due to dissipative tunneling, thus en-
hancing the resonant peak. However, the imaginary part of
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the effective eigenvalue or the resonant frequency remains
substantially unaltered, again supporting the above conclu-
sion. The nature of the ac response suggests that measure-
ments of this response based on the behavior of the Q factor
may constitute a useful estimate of the role played by dissi-
pative macroscopic quantum tunneling in a Josephson junc-
tion. The situation should be mirrored in measurements �59�
of ferromagnetic resonance in the dynamics of the magneti-
zation of fine single-domain ferromagnetic particles insofar
as such experiments should also yield information concern-
ing macroscopic tunneling in these systems.

VIII. CONCLUDING REMARKS

We have demonstrated how the QSE which we have pro-
posed may be used to calculate quantum corrections to the
various characteristics of the Josephson tunnelling junction
in the zero-capacitance and high-temperature limits. One of
the most useful conclusions is that for small values of the
quantum parameter all the characteristics may be calculated
using a three-term scalar recurrence relation essentially simi-
lar to that encountered in the classical solution. Thus in the
first order of perturbation theory one may obtain analytic
formulas very similar to those of the classical case. The
quantum deviations from the classical result so produced are,
however, detectable �cf. Fig. 5�. We have also illustrated the
convergence of the perturbation method by comparing the
results for the dc characteristics in first and second order of
perturbation theory. Thus it appears that the first-order ap-
proximation, which is relatively easy to compute, is valid for
small values of the quantum parameter. We have also com-
pared our results with those yielded by another form of the
QSE �in which the drift, as well as the diffusion coefficient,
is altered�, which has been proposed by Ankerhold et al. �43�
and subsequently used by other authors �42,45–47�. This
equation, however, appears to predict unphysical results such
as a negative resistance for zero voltage and negative differ-
ential resistance. Moreover, the equilibrium solution of this
equation does not reduce to the Wigner configuration-space
equilibrium distribution. This appears to be a consequence of
neglecting the contribution of the p2 term in the Wigner
phase-space distribution to the configuration-space distribu-
tion as we have already discussed in Ref. �19�. We remark
that in a later publication the form of the QSE proposed by
us has been accepted by Ankerhold �60� �his Eq. �6.121�, p.
161�, which is identical to Eq. �2�.

We finally remark that the treatment of the tilted cosine
potential outlined here may be extended to the general iner-
tial or nonzero-capacitance case. In the classical limit, this
has already been accomplished in Ref. �61�, where the gov-
erning Klein-Kramers equation in phase space giving rise to
Brinkman’s hierarchy of partial differential recurrence rela-
tions �19,27� in configuration space �which are now obtained
rather than the Smoluchowski equation� has been solved us-
ing matrix continued fractions yielding the escape rate and
dynamic structure factor. Moreover, the results agree with
Melnikov’s �62� asymptotic expression for the escape rate
for all values of the damping. These continued-fraction cal-
culations have been extended �17� to the quantum case using

Eq. �1� for zero tilt. The escape rate so calculated again
agrees with Melnikov’s asymptotic expression for the quan-
tum escape rate �62,63�. Thus it is clearly evident that with
certain minor modifications, all these calculations could be
applied to the evaluation of quantum effects in the character-
istics of the Josephson junction including the capacitance.
This of course corresponds to a solution valid for all damp-
ing ranges since the capacitance of the junction plays the role
of inertia in the mechanical analog.
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APPENDIX A: STATIONARY MATRIX
CONTINUED-FRACTION SOLUTION OF Eq. (16)

In the stationary state, we have from Eq. �16�

Qn�Cn + Qn�
−Cn−1 + Qn�

+Cn+1 + Qn��Cn−2 + Cn+2� = 0,

�A1�

where Qn�=−�nb−1+ iy+nb
2 /5�, Qn�
�

= � �1�n
�3n
2�1� iby� /5� /2, and Qn�=bn
2 /5. In or-
der to solve Eq. �A1�, we introduce the column vectors

C�n = � C�2n

C��2n−1�
�, Cn = C−n

* ,

and the single-element initial vector C0= �1�. Noting that
C−1=C

1
*, we rewrite Eq. �A1� as the set of matrix three-term

recurrence equations

Q1
−C0 + Q1C1 + Q1

+C2 = − FC1
*,

Qn
−Cn−1 + QnCn + Qn

+Cn+1 = 0 ,

for n=1 and n�1, respectively, where the matrices Qn and
Qn

� are given by

Qn = � Q2n� Q2n�
−

Q2n−1�+ Q2n−1�
�, Qn

+ = �Q2n� Q2n�
+

0 Q2n−1�
�,

Qn
− = � Q2n� 0

Q2n−1�− Q2n−1�
� ,

with Q1
− and F defined as

Q1
− = � Q2�

Q1�
− �, F = �0 0

0 Q1�
� .

Thus the vectors Cn can be calculated via matrix continued
fractions as �28�

C1 = �1�Q1
−C0 + FC1

*� , �A2�

Cn = �nQn
−
¯ �2Q2

−C1, �A3�

where �n are the matrix continued fractions defined by the
recurrence equation
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�n = �− Qn − Qn
+�n+1Qn+1

− �−1.

We represent the complex vectors and matrices in Eq. �A2�
as C1=C1�+ iC1�, �1Q1

−=S1�+ iS1�, and �1F= f+ ig. Equating
the real and imaginary parts of Eq. �A2�, we obtain simulta-
neous equations for the unknowns C1� and C1�: namely,

�I − f�C1� − gC� = S1�C0, �A4�

�I + f�C� − gC1� = S1�C0, �A5�

where I is the unit matrix. On solving Eqs. �A4� and �A5� for
C1� and C1�, we find

C1� = �I − f − g�I + f�−1g�−1�S1� + g�I + f�−1S1��C0, �A6�

C1� = �I + f − g�I − f�−1g�−1�S1� + g�I − f�−1S1��C0. �A7�

The dc characteristics determined from Eqs. �33�, �34�, �A6�,
and �A7� are plotted in Figs. 4�a� and 4�b�. The matrix
continued-fraction algorithm presented can be applied to the
calculation of the second-order correction in the linear im-
pedance of the junction. Furthermore, it can be adapted to
any desired order of 
.

APPENDIX B: PROOF OF Eq. (35)

We seek a perturbation solution of Eq. �21� as Cn=Cn
cl

+
Cn
�1�. The recurrence equations for Cn

cl and Cn
�1� become

QnCn
cl + Qn

+Cn+1
cl + Qn

−Cn−1
cl = 0, �B1�

QnCn
�1� + Qn

+Cn+1
�1� + Qn

−Cn−1
�1� = n�Cn+1

cl + Cn−1
cl �/2, �B2�

where Qn and Qn
� are defined by Eq. �22�. The solution of the

homogeneous recurrence equation �B1� is given by �28�

Cn
cl = Sn

clSn−1
cl

¯ S1
cl = In+iyb�b�/Iiyb�b� ,

where Sn
cl=Cn

cl /Cn−1
cl = In+iyb�b� / In−1+iyb�b�. This is easily

proved by comparing the continued fraction Sn
cl, viz.,

Sn
cl =

1/2
n/b + iy + Sn+1

cl /2
, �B3�

with the corresponding continued fraction for the modified
Bessel functions I��z�, viz. �28�,

I��z�
I�−1�z�

=
1/2

�/z + I�+1�z�/�2I��z��
, �B4�

which follows from the underlying recurrence relation for
I��z�, viz, I�−1�z�− I�+1�z�= �2v /z�I��z� �54�. By inspection,
the continued fraction Sn

cl given by Eq. �B3� is identical to
Eq. �B4� if �=n+ iyb and z=b. The solution of the inhomo-
geneous recurrence equation �B2� for C1

�1� can be obtained by
the standard methods described in �28� and is given by

C1
�1� = �

n=1

�

�− 1�nn�Cn+1
cl + Cn−1

cl ��
k=1

n

Sk
cl

=
1

Iiyb
2 �b��n=1

�

�− 1�nnIn+iyb�b��In+1+iyb�b� + In−1+iyb�b�� .

Thus we obtain Eq. �35�.

APPENDIX C: THE EFFECTIVE RELAXATION TIME
AND AFTEREFFECT SOLUTION

Suppose that at a time t=−� the tilt y is incremented by a
small value �, where b��1. This increment vanishes at t
=0. The relaxation functions fn�t�=cn�t�−cn��� or aftereffect
solutions then obey the differential-recurrence relation

d

dt
fn�t� + �n2 + inby�fn�t� =

bn

2
��1 − n
�fn−1�t�

− �1 + n
�fn+1�t�� . �C1�

Equation �C1� is valid only for t�0. Now we could solve
Eq. �C1� exactly for the linear response, which in general
comprises an infinite number of closely spaced exponential
relaxation modes, using continued fractions: viz., fn�t�
=�kak

ne−t/�k
�n�

. However, the effective relaxation time method
�28�, whereby the multimodal response is represented by a

single mode fn�t�� fn�0�e−t/�ef
�n�

, which is complex, meaning
that the effective relaxation functions display damped oscil-
latory behavior, yields a close approximation to the exact
solution at all times. In order to apply this method, it is
supposed that, taking n=1 for example,

f1�t� = f1�0�e−t/�ef
�1�

.

Thus the normalized effective relaxation time �ef
�1� is given by

�ef
�1� = − �f1�t�/ ḟ1�t��t=0. �C2�

An explicit evolution equation for f1�t� can be obtained from
Eq. �C1�; we have

d

dt
f1�t� + �1 + iby�f1�t� = −

b

2
�1 + 
�f2�t� , �C3�

where we have noted that f0�t�=0. Equations �C2� and �C3�
thus imply that the effective relaxation time is

�ef
�1� = �1 + iby + b�1 + 
�

f2�0�
2f1�0��−1

. �C4�

Here fn�0�=cn�0�−cn��� at n=1,2 can be evaluated in terms
of continued fractions since the initial values cn�0� satisfy the
recurrence relation

�Qn − ib��cn�0� + Qn
+cn+1�0� + Qn

−cn−1�0� = 0, �C5�

while the final values cn��� also satisfy Eq. �C5� with �=0.
Furthermore, as far as the linear response of the junction is
concerned, we are only interested in terms linear in �. Thus
we may express the initial values cn�0� as power series in the
perturbation �: viz.,

cn�0� = cn��� + ��ycn�0� + o��� . �C6�

The derivatives �ycn�0� must now be evaluated, which is
done as follows. On substituting Eq. �C6� into Eq. �C5� and
noting that cn��� satisfies Qncn���+Qn

+cn+1���+Qn
−cn−1���

=0, we have the recurrence relations for �ycn�0� as

Qn�ycn�0� + Qn
−�ycn−1�0� + Qn

+�ycn+1�0� = icn��� , �C7�
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where cn��� can be expressed �noting Eq. �24�� in terms of
products of continued fractions as

cn��� = SnSn−1 ¯ S1. �C8�

The solution of the inhomogeneous recurrence Eq. �C7� for
�yc1�0� can be obtained by standard methods and is given by
�noting Eq. �C8��

�yc1�0� = 2i�
n=1

�

�
k=1

n

�Qk−1
+ /Qk

−�Sk
2.

Since �yc2�0� can be obtained from Eq. �C7� for n=1 as
�yc2�0�= �ic1���−Q1�yc1�0�� /Q1

+, the effective relaxation
time from Eq. �C4� is then

�ef
�1� = �1 + iby +

b

2
�1 + 
�

�yc2�0�
�yc1�0��−1

= i
�yc1�0�
bc1���

= −
2

bS1
�
n=1

�

�
k=1

n

�Qk−1
+ /Qk

−�Sk
2.

The effective relaxation time �ef
�−1� for f−1�t� is related to �ef

�1�

by �ef
�−1�=�

ef

�1�*.
The behavior of the real and imaginary parts of the in-

verse of the effective relaxation time 
ef
+ =1 /�ef

�1�=
�+ i
� as
a function of the barrier height b and bias parameter y is
illustrated in Figs. 7 and 8. In the classical limit, 
ef

+ can be
given in terms of modified Bessel functions of the first kind
as

�
ef
+ �
=0 =

bIiyb�b�I1+iyb�b�

2�
0

b

Iiyb�z�I1+iyb�z�dz

. �C9�

The deviations from the classical equation �C9� are appre-
ciable as illustrated by Figs. 7 and 8.
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